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The collaboration between the Center for Systems Science and NASA Johnson Space Center

took place during the period January 1985 to August 1987. The research proposal submitted by

the Center to NASA concerned disturbance isolation in flexible space structures. The general

objective of the proposal was to create within the Center a critical mass of expertise on problems

related to the dynamics and control of large flexible space structures. A specific objective was

to formulate both passive and active control strategies for the disturbance isolation problem.

Both objectives were achieved during the period of the contract.

While an extensive literature exists on the control of flexible space structures, it is generally

acknowledged that many important questions remain open at even a fundamental level. Hence,

instead of studying grossly simplified models of complex structural systems, it was decided as a

first step to confine attention to detailed and thorough analyses of simple structures.

1. Control of a Flexible Beam

The cantilever beam, the beam in free motion, and two beams attached to a rigid body capture

most of the important features of the problems encountered in more complex structures. The

first set of problems that was studied included passive control, active control, indirect adaptive

control, and direct adaptive control of these simple systems.

1.1 Passive Control of a Cantilever Beam

The effect of passive elements on the dynamics of a cantilever beam was extensively studied

during the summer of '85. The study was undertaken with the belief that simulations with

discrete oscillators at various locations on the beam would provide valuable data regarding

effective actuator and sensor locations and efficient control strategies. As an auxiliary benefit

of these simulations, a considerable amount of information was also obtained on the extent to

which vibration control of a beam can be effected through passive elements. In particular, the

optimal oscillator frequency, the damping ratio, as well as the location of the oscillator were

determined for the dynamic response of a cantilever beam in the presence of transverse loads.

A cantilever beam of unit mass-density was modeled on Microvax Station I using Finite

Element Methods (FEM) with 20 nodes, 40 degrees of freedom and 80 state variables.
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The natural frequencies, mode shapes and the response of an unforced undamped cantiler

to an impulse load were included in a preliminary report. The behavior of the beam with a

discrete oscillator attached to it was also shown. The oscillator lowered the beam frequencies

while attenuating the gain at the resonant frequencies. When the oscillator was damped, all

oscilations slowly decayed to zero. The optimal dynamic response was determined by varying

the oscillator location, frequency and damping ratio. While the behavior of continuous systems

was studied with the cantilever beam as a specific case, parallel work on rigid body dynamics
was carried out as well.

1.2 Active Control of a Cantilever Beam

Our studies on active control were guided by the results obtained for a beam with optimal

passive controllers. In particular, the actuator and sensor were located at the optimal node

(tip). It was found that the response (displacement) of the beam with active control (colocated

rate feedback) is considerably improved when compared to that with passive control.

1.3 Identification of a Flexible Beam

In indirect adaptive control the unknown plant is first identified using input-output data and

this in turn is used to determine the parameters of an adaptive controller. To identifying the

plant, however, a specific model structure has to be assumed. For the identification of a flexible

beam, an ARMA model was used. Assuming that the force u(t) applied at one point of the beam

is the input and the transversal displacement y(t) of another point of the beam is the output,

the ARMA model may be considered to describe the input-output behavior of the unknown

system. The ARMA model may be described as follows:

A(q-X)y(t) = B(q-1)uCt)

where
A(q -1) = 1 + alq -1 +... + anaq -ha

B(q -1) = blq -x + . . . + bnBq -'_s

where q-l= unit delay operator (q-ly(t) = y(t- 1)). The choice of the parameter estimation

technique to be used wil depend, among other factors, on the type of data processing needed,

e.g. batch (off-line) or recursive (on-line) methods, the cost function to be minimized, and the

accuracy desired for the estimates.

The parameter estimation techniques utilized in this study were:

• Least Squares Method (Off-line and Recursive)

• Instrumental Variable Method (Off-line and Recursive)

• Prediction Error Method (Recursive)

The final choice of the specific method used will depend on the computational capacity available

for identification and control purposes. Some of the advantages and disadvantages of each of

the three method are shown in the following table:



Method

Least Squares

Instrumental Variable

Prediction Error

Advantage

Easy Implementation

and low computational

requirements
Minimize Correlation

between noise and data

vector choosing a suitable
IV vector.

Reaches lower bounds

for the covariance of

estimation error (Cramer

-Rao bound in Gaussian Case)

Disadvantage

Accuracy depends on correlation

between noise(disturbance)and
data vector.

It is not possible to reach lower
bounds for the covariance of the

estimation error.

High computational requirements.

The real beam was analyzed using FEM with 40 degrees of freedom and 80 state variables.

This model was adequate to represent the modes of the beam accurately atleast up to th 4th

mode. The motion of the beam was simulated using three-mode model (6 state variables)

obtained from finite element analysis. Parameter estimates were found for different values of nA

and riB, using the recursive least squares method.

2. Software Package

For the solution of problems in structural dynamics, a large number of finite element programs

are commercially available. However, these programs have generally been designed for the

analysis of the dynamical behavior of structures under given loading conditions rather than for

the simulation of actively controlled structures. Further, it is our opinion that a considerable

familarity with the details of the software will be necessary to efficiently implement and evaluate

any proposed schemes for active control of space structures. These considerations led to our

decision that an extensive computer software package developed by Professor Maewal should be

suitably modified for our purposes.

The program is based on the finite element method with nodal displacements as the primary

variables. The software is highly modular and contains all the elements (such as beams, plates

and shells) that we foresee using in the near future. The dynamic analysis capabilities of the

program include the calculation of (i) the natural modes and frequencies, (ii) the response of the

structure to arbitrary time-dependent loads, and (iii) the response of the structure to arbitrary

time-dependent loads with a user-defined control scheme that prescribes the actuator forces as

a function of generalized nodal displacements.

3. Graduate Course on Flexible Structures

A graduate course entitled _Control of Flexible Structures, _ was given in the spring term (1986)

jointly by Professors Narendra and Maewal and Dr. Annaswamy. The emphasis of the course

was on the generation of models using the finite element method and the use of optimal control

theory to control such models effectively. In particular LQG methods using observers and

Kalman filters, modal cost analysis, internal balancing and aggregation methods were studied



during thisperiod. Since the dimension of the model obtained by using the finiteelement

method isusuallyvery large,the above methods were alsoused to obtain reasonable reduced

order models of the system. As a resultof these theoreticalefforts,the members of the group

are now wellequipped to proceed to the next stage in the controlof largeflexiblestructures,

4. Flexural Motion of A Flat Plate

Around April 1986, it was decided to apply several of the theoretical methods discussed in

the class to one complex practical problem, to enable all members of the group to gain hands-

on experience. The control of a flexible plate was chosen for this purpose. Using the finite

element method, a 512th order model and the corresponding mass and stiffness matrices were

determined. A reduced order model of dimension 16 was then derived using the first eight modes
of the model. Passive as well as active control methods were tried out on the latter model.

a) The Model:

Consider a flat plate occupying a domain fl in the z - y plane. The classical theory for the

flexural deformation of the plate can be formulated in terms of the displacement w(x, y, t) normal

to the x - y plane. The flexural strain components are related to the transverse displacement

according to
a2w

tczz : c3x2 (la)

a2w

_vv -- c3y2 (lb)

Oq2W

_;"v = -2axa---_ (lc)

The strain energy of the plate (assumed to be made of a linearly elastic, isotropic material) is

given by

U:ID/n[ , , _}_l-v, ]

Here u isthe Poisson'sratioof the materialofthe plate,and D isitsbending stiffnessgiven by

Eh 3
D-

12(I-

with E and h being respectively, the Young's modulus of the material of the plate and the plate
thickness.

The equation of motion of the plate when it is subjected to transverse loads p(x, y, t) can be
written in the form of the variational statement

h ik Ow dfl + aU + fn p Ow df_ = O, (3)

where p is the density of the material of the plate.
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It is convenient to introduce scaled variables

=
= w/h

= ,Dh2

where £ is a typical length scale associated with the domain fl. In the scaled system, the

variational statement (3) becomes

/#Owdfl+OV+f_pawd_=0, (4)

where (':) z_ aa_ ' _ denotes the scaled version of the domain fl and

V = _ 2vw,=_w,v v - (5)

Equations (4-5) are the basis of the scheme which has been used to discretize the problem.

b) Discretization:

Since the variational problem (5-6) contains second derivatives of the displacement w, the

basis functions that can be used to obtain a discrete approximation must be at least of the class

C 1 (i.e., the functions must be continuous and have continuous first derivatives). This criterion is

satisfied by bicubic Hermite Polynomials over a rectangle; the choice of these functions, however,

restricts the class of problems that can be analyzed to those with the domains El whose boundary

lines are parallel to one of the coordinate axes.

Within a rectangular element, the bicubic Hermite polynomials interpolate a function in

terms of the values of the quantities (w,w,=,w,_,w,zv) at the four nodes (corners) of the rectangle.

Thus the element has 16 degrees of freedom, with four degrees of freedom per node.

Let q_ denote the vector of degrees of freedom of the ith element, and FT(x,y) the vector of

Hermite bicubics. Then with (5), the strain energy of an element can be written as

,,V _ _ _ q K,q_ (6)

where

w = F (s)

and _ denotes the domain occupied by the i th element. Similarly the discrete approximation

to the first and the last term in (4) can be obtained by first noting that
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where

M_ = /H_ FFT d-_' (11)

]_ = f_ pFT d-_. (12)

The element matrices K_ and M_', and the load vector f_ can be assembled by using the usual

finite element assembly process to obtain the discrete approximation to (4) in the familiar form

M_] + gq = f. (13)

c) The Transfer Matrix:

Since the matrices M and K in equation (13) axe respectively positive definite and positive

semi-definite, it is well known that a linear transformation exists which reduces the equation to

the modal form. In particular, if Cr = q, substituting in equation (13) and premultiplying both

sides by CT, we have

• TM¢_; -t- CTK_r : ffpTf or

+ C12r = Crf (14)

where I2 2 is a diagonal matrix whose elements w_,w_,...w_ are arranged in ascending order.

The vector f is determined by the location of the actuators as well as the external input vector u;

similarly, the output vector y is determined by the location of the position and velocity sensors.

The (n x n) modal matrix • contains all the relevant information about the modes, since each

column _bk corresponds to one mode (the k th mode) of the system.

From the above it is clear that each actuator affects all the modes and that the latter in turn

affect all the outputs. If there are a actuators, a columns of ¢T are retained; similarly if there

are s sensors, s rows of ¢ are retained. Denoting these by the matrices _T and ¢, respectively,

the (s x a) transfer matrix of the overall system (of order 2n) is given by

+ (15)

if only position sensors are used. If, however, only velocity sensors are used, the transfer matrix

is given by
s¢,(8 I + (16)

In general, since both position and velocity sensors are used, the transfer matrix is a linear

combination of the two given in (15) and (16).

d) The Reduced Order Model:

When the transfer matrix of the system is obtained as described above, its characteristic

polynomial is of degree 2n. Since n is generally large (256 in the case of the plate in the

simulations), this poses a serious problem computationally. So, the physical model obtained by

the finite element method is successively reduced for both evaluation and design purposes. This

process is briefly described in this section.

The principal idea behind the reduction procedure is that only a small number of the modes

of the system be retained in the final model. The vector r and matrix l_2 are denoted as

r-- ; "-
rR 0 f2_
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Figure 1

so that r_ denotes the controlled modal vector of dimension nl (< n) and rR the residual vector

of dimension (n - nl). The transfer matrices given by (15) and (16) are modified as follows:

Let

¢, = [C¢,,, OR,,] and Cr = C_,, " (18)

Assuming that OR,, and CR,a are sufficiently small, they are replaced by null matrices to yield

the transfer matrix of the reduced order model (of order 2nl) as

for position sensors and

Cc,s(s2/+ _2 _-_mT (19)

n2 't-I _T (20)ace,8( s2 I + "c) "_c,a

for velocity sensors. For the plate under consideration, eight modes were retained in the reduced

order model, yielding a sixteenth order system.

4.1 Vibration Control of Plate

Following the procedure outlined in section 2, eight modal vectors of dimension 256 were first

determined corresponding to the eight principal modes. These in turn were truncated to yield

(8 × a) and (s × 8) matrices for the inputs and outputs respectively. The s rows of the second

and the a columns of the first can be chosen from two hundred and fifty six possible values

and depend upon the location of the sensors and actuators. Using this model, both passive and

active control of the plate were attempted. The results obtained were included in a progress

report submitted to NASA.

Figure 1 shows a 10 × 10 grid representation of the plate. The boundaries of the plate are

clamped and there are 64 free nodes. At each free node, the displacement w, the slope we

in the f direction, the slope w n in the r/ direction, and the second mixed derivative wen, are

four independent variables, making 256 variables in all. Along with their time derivatives, they

constitute the 512 state variables of the system.

a) Passive Control of Plate: Of the various methods known for disturbance isolation, the sim-

plest involves the use of passive elements. Auxiliary systems, which are mass-spring-dashpot

combinations, are attached at various nodes and their parameters tuned so that the effect of a

disturbance is damped out relatively rapidly.



Theoptimal parametersof the auxiliary system were chosen based on the experience gained

with the similar problem involving a beam. This involved choosing a mass which is approximately

one tenth of that of the plate and locating it at the point at which the first mode has a maximum.

The spring constant was chosen so that the natural frequency of the auxiliary system coincided

__ant frequency of the plate. The auxiliary system serves to dissipate energy and

mt the vibrations in the system due to initial conditions.

,

L

v

s

a

s

tuatorsand Sensors:The main aim ofthisstudy was todetermine the locationof

mnsor-actuatorcombination to yieldthe optimal response.Due to the symmetry

y ten possiblepositionsneed tobe consideredand theseare indicatedin Figure

nsor islocatedat a node (say5,3 which correspondsto location9) and a force

the negative of the velocity is applied at the same point. It is well known that

_e introduction of dynamic damping into the system so that the overall system

mptotically stable. The effect of this control on both the position and velocity

aeasured. An exhaustive search was made by performing 200 experiments. In all

¢ gain of k = -1 was used. These correspond to the cases where the colocated

ttor are at locations 1,4, and 10 respectively. The initial condition of the plate

w(0) =
w (0) =0
w.(0) =0

=0

*r the specified initial conditions, the best location of the actuator-sensor com-

:ation 4 (corresponding to _ - 5, r/= 5). In such a case the position as well as

at all points are damped out rapidly. In contrast to this_ when the actuator-

ion is at 1 (i.e., 2,2) the best response is at the same node. At locations 2,3

equency components persist, while along 5,8 and 10, high frequency signals are

nt. Finally, when the actuator and sensor are located at 9, the damping effect

asatisfactory.

ons also indicate that the best location for the sensor-actuator combination is

this case, several other experiments were carried out using different feedback

1 that the optimal responses both in terms of speed as well as accuracy are
_es of k around -2.3.

the results obtained by the active control described in this section to those

_ive control in the previous section, it is clear that the former is superior both in

ed of response as well as its effect on the displacements at all the other nodes.

noting that the optimal location of the actuator-sensor combination will also be

large extent by the nature of the anticipated disturbance (in the present case,

_cement).

ge ofcolocation is that the stability properties of the overall system are improved

e number of sensor-actuator pairs. Even in such a multivariable case, feeding the

celocity sensor to the actuator at the same node can be theoretically shown to

;otic stability. The theory can also be extended to include more general feedback
sors and the actuators.

assuring global asymptotic stability, colocated actuators and sensors are simple
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are quite robust. However, as mentioned earlier, their effectiveness is over a

nd hence is quite limited.

kctuators and Sensors: As mentioned in the introduction, practical constraints

se of actuators and sensors at the same point. Further, in many situations, the

trol (LAC) resulting from colocation may not be adequate to meet specifica-

._s high authority control, generated using estimates of the states of the system

criterion function, may be desirable. It should also be mentioned here that

ntrol (HAC) generated by optimal control techniques can also be used when

sensor are colocated. The essential difference between HAC and LAC is that

back is used in the latter case, the control input is computed using principles

I in the former to achieve a specific performance objective over some portion of

1 this section typical examples of HAC when actuators and sensors are located

are presented.

,rs and sensors are not colocated and direct feedback is used, there is a distinct

ability, particularly when the feedback gain is high. Hence, caution must be

rectly feeding back the signals to the actuators, if stability is to be guaranteed.

_ack: In this case the measured output is processed dynamically before being

:tuator. The normal procedure is to use an observer to generate an estimate

,f the system and use _ in turn to generate a control input u(.) to the flexible

)timal control minimizes a quadratic performance index of the form

o °° xT Qx + ur Rudt

i-definite matrix. In particular, the displacements of all the nodes are included

ce index. Experiments were performed by locating a velocity sensor at (3,3)

at the same node. The resulting performances when colocated rate feedback

al feedback which depends on _ were used, were compared.

_he stability of the system, colocated sensors and actuators should be used

3. However, when high performance is needed, quadratic optimization theory

rticularly effective. In high dimensional problems, however, the effect of spill

,deled parts of the system have to be studied before implementing the control.

!the flexural vibrations of a plate, while seemingly a simple problem, has several

;s to it. It provided the group at Yale an opportunity to get acquainted with

"ulties encountered in problems of high dimensionality. The variety of criteria

[ for the evaluation of the performance, as well as the different approaches

control, force the designer to limit his choices at every stage. Based on the

! while simulating this problem, the Yale group became ready to deal with the

)f a model whose dimension is approximately one thousand.

5 _ance Isolation in a Space Station Model

fe

,d June 1, 1986 to October 1987, the technical team members including Pro-

and Maewal, Dr. Annaswamy and Mr. Khamkoon, Mr. Duarte, and Mr.
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the problem of developing active control strategies for disturbance isolation

Lon. Ms. Cunningham, the systems manager of the Center assisted in the
ties.

mcerning the space station was received from NASA Johnson Space Center.

:hematic diagram of the proposed NASA space station with dual keel configu-

station consists of 128 nodes with 732 active degrees of freedom. To facilitate

s, a new schematic representation was prepared with all nodes properly hum-

nation concerning the mass and stiffness matrices M and K were provided in

ut 4 format on a tape. After a considerable interval of time the eigenvalues

,ding eigenvectors were also received. These included 6 rigid body modes and

nodes. From the M and K matrices, the first 70 eigenvalues and eigenvectors

the Center using a subspace iteration scheme developed by Professor Maewal.
_red with those received from NASA and were found to be identical. A new

ten to convert the differential equations

M4 + Kq = f

r form
= Ax+ Bu

y = Cz

variables correspond to the modal amplitudes and velocities in this represen-

response of the space station was studied for momentary disturbances at node

effect of the behavior of elastic modes, the rigid body modes were neglected.

;ersimulationswere carriedout to determine the sensitivityof the response

due to initialdisplacements at other nodes. The response due to colocated

studiedfordifferentvaluesof gains.The effectof controlwas found to be a

he sensor-actuatorpairswere locatedat node 236 where the firstmode has a

Ide. The responsesdue to sinusoidalexcitationat differentnodes were also

or accomplishments of this period concerned the three dimensional representa_

rough 55. These had been received earlier from NASA. But the representations

]enter proved far superior. They provided greater insights into the modal be-

.*station. It became clear from these representations that only modes beyond

tly affect the habitat.

lg disturbances due to crew members (one man forceful soaring) was received

tape during this period. This in turn was transferred to the Yale model.

ra of the given functions were computed and were found to have maximum

vicinity of 1 Hz.

mcessary information regarding the space station and the disturbances had

, emphasis during the second stage was on generating active control strategies.

)rmation concerning the number of actuators and sensors that could be used,

well as their location and the criteria by which the performance of the space

judged, had not been received from NASA, simulation studies were carried

:am using reasonable assumptions.
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; of simulations the free vibrations of the space station was studied. An

Lt was introduced in node 236 and the corresponding response at the same

?o study the effect of approximations various evaluation models of the space

,5, 10, 20 and 40 modes were simulated. Not surprisingly, the response in the

cated that the accuracy of the model improved as more and more modes were

_d feedback was used at node 236 and the experiments were repeated for the

ler experiments were carried out using different gains in the feedback loop.

k was also attempted at other nodes besides node 236. Colocated feedback

nd to be most effective when the actuator-sensor pair is placed at node 236

de has maximum amplitude.

)rced vibrations were studied next. Disturbances at various frequencies were
; 236 and their effects were observed at different locations on the station. These

repeated with colocated feedback at node 236 with a feedback gain of unity.

ance is at node 236 the effect at the habitat was found to be approximately
de of the disturbance without control and .2% with control.

listurbances were introduced which may be generated by crew member motion.

, disturbances introduced at node 288 was observed at nodes 60, 65,250, 255,

298,302,304, 2060, 2250, 2255, 2288, and 2302. The experiment was repeated

e feedback at node 236 and node 288 with a feedback gain of 200.

ced order LQ controller was used in the place of a colocated rate feedback.

while sensor and actuator are located at the same node, the control input

o rate feedback but obtained by minimizing a quadratic performance index

; all the modes were accessible. The responses at various nodes in the habitat
th state feedback with a reduced order controller located at node 236 and

twenty flexible modes. In all cases, the simulation was carried out using an

with 38 modes and the Q and R matrices were chosen to be unit matrices.

as repeated with the reduced order controller based on modes 25-44. Finally,

as applied at node 288 using a reduced order controller based on modes 25-44

= [1]. Assuming that the location that is of interest for obtaining minimum

t, it was observed that with such a feedback, a steady state acceleration of
_btained.

fl, the acceleration magnitude at the habitat was of the order of 1.56 × 10-6g.

te feedback this was reduced to approximately by a factor of 2. With an LQ

further reduced by a factor of 25 to 6.5 × 10-Sg. In all cases, node 298 was

he various acceleration responses.

pts were made to determine appropriate controls for the space station using

dels. The evaluation model of the space station includes 10 modes, i.e. of

:lg a force actuator and velocity sensor at node 236 as the input and output

feedback using a linear quadratic regulator was implemented to control the
formance indices of the form

fo°° [xTQx q-u 2] dt

were used and the response was observed at node 236 in the habitat.
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a reduced order controller was built based on the first m flexible modes, for

_h an initial displacement at 236, the velocity response at 236 was observed

k. It is seen that as m increases, the quality of feedback also increases. Next,

Itates were not accessible for measurement, an ruth order observer was built

;es and the state estimates were fed back.

e of an LQ controller when the entire state is accessible is obviously the best

d. This is followed closely in performance by an LQ controller using a full

_iderable care has to be taken when reduced order observers are used in _he

._ instability may arise. Using rate feedback in addition to an LQ controller

mt performance to a certain extent. Finally, the problem of damping higher

:ontroller is not straightforward. The number of actuators and sensors that

ocation become quite critical.

celeration of less than 10-vg in the habitat due to crew disturbance appears

lore experimentation with several actuators and sensors which are judiciously

_ed.
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